This paper focuses on size effects in periodic mechanical metamaterials driven by reversible pattern transformations due to local elastic buckling instabilities in their microstructure. Two distinct loading cases are studied: compression and bending, in which the material exhibits pattern transformation in the whole structure or only partially. The ratio between the height of the specimen and the size of a unit cell is defined as the scale ratio. A family of shifted microstructures, corresponding to all possible arrangements of the microstructure relative to the external boundary, is considered in order to determine the ensemble averaged solution computed for each scale ratio. In the compression case, the top and the bottom edges of the spe...