We study an optimal growth model for a single resource based economy. The resource is governed by the standard model of logistic growth, and is related to the output of the economy through a Cobb-Douglas type production function with exogenously driven knowledge stock. The model is formulated as an infinite-horizon optimal control problem with unbounded set of control constraints and non-concave Hamiltonian. We transform the original problem to an equivalent one with simplified dynamics and prove the existence of an optimal admissible control. Then we characterize the optimal paths for all possible parameter values and initial states by applying the appropriate version of the Pontryagin maximum principle. Our main finding is that only two q...