This bachelor thesis deals with the issue of tracking multiple objects in a video, specifically focusing on non-learning algorithms. The first chapter represents the theoretical part of the thesis, in which some of the often used tracking methods are described, such as mean-shift, scale-invariant object transformation, Kalman filter, particle filter and Gabor wavelet transformation. These algorithms are broken down by properties they use for proper tracking. The chapter also contains section assignment problem, which is mainly concerned with Hungarian algorithm. The next part describes options of merging multiple tracking methods that are broken down by construction type into parallel, cascade, weighted and discriminatory with example for e...