Warehouse management has emerged as a determinant for success of global supply chain management. This thesis focuses on how to solve warehouse challenges in global supply chain management (SCM) that is characterized by large volume uncertainty, great responsiveness needs and complex order-fulfilment collaboration with other functionalities. We employ data analytic methods to exploit the rich data information obtained from detailed registration of daily warehouse operations to address these challenges. By providing actual application examples in real-world situations we showcase the potency of such data-driven warehouse management. In this dissertation, data-driven warehouse management is presented by four-steps in the time horizon of wa...