Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d).Fil: Cukierman, Fernando Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin
AbstractWe define Frobenius incidence varieties by means of the incidence relation of Frobenius imag...
Let BG be the classifying space of an algebraic group over the complex field C. We compute a new sta...
AbstractLet Vn,d⊆PN, for N:=(n+dn)−1, be the order-d Veronese embedding of Pn, Xn,d:=T(Vn,d)⊆PN the ...
Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in compl...
Let $F$ be an infinite division ring, $V$ be a left $F$-vector space, $r>0$ be an integer. We study ...
With any \emph{surjective rational map} $f: \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ of the projec...
For a given monic integral polynomial $f(x)$ of degree $n$, we define local roots $r_i$ of $f(x)$ fo...
Proceedings of The First Symposium on Non-Linear Analysis : CONVEXITY, CHAOS AND FRACTALS / edited b...
Proceedings of The First Symposium on Non-Linear Analysis : CONVEXITY, CHAOS AND FRACTALS / edited b...
For positive integers d, m, ngeq 1 with (m, n)neq(1, 1) and mathbb{K}=mathbb{R} or mathbb{C}, let Q_...
Given $d\in \mathbb{Z}_{\geq 2}$, for every $\kappa=(k_1,\dots,k_n) \in \mathbb{Z}^{n}$ such that $k...
Proceedings of The First Symposium on Non-Linear Analysis : CONVEXITY, CHAOS AND FRACTALS / edited b...
Proceedings of The First Symposium on Non-Linear Analysis : CONVEXITY, CHAOS AND FRACTALS / edited b...
Let S be a Desarguesian (t-1)-spread of PG(rt-1,q), $\Pi$. It is known that the Plucker embedding of...
Given $d\in \mathbb{Z}_{\geq 2}$, for every $\kappa=(k_1,\dots,k_n) \in \mathbb{Z}^{n}$ such that $k...
AbstractWe define Frobenius incidence varieties by means of the incidence relation of Frobenius imag...
Let BG be the classifying space of an algebraic group over the complex field C. We compute a new sta...
AbstractLet Vn,d⊆PN, for N:=(n+dn)−1, be the order-d Veronese embedding of Pn, Xn,d:=T(Vn,d)⊆PN the ...
Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in compl...
Let $F$ be an infinite division ring, $V$ be a left $F$-vector space, $r>0$ be an integer. We study ...
With any \emph{surjective rational map} $f: \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ of the projec...
For a given monic integral polynomial $f(x)$ of degree $n$, we define local roots $r_i$ of $f(x)$ fo...
Proceedings of The First Symposium on Non-Linear Analysis : CONVEXITY, CHAOS AND FRACTALS / edited b...
Proceedings of The First Symposium on Non-Linear Analysis : CONVEXITY, CHAOS AND FRACTALS / edited b...
For positive integers d, m, ngeq 1 with (m, n)neq(1, 1) and mathbb{K}=mathbb{R} or mathbb{C}, let Q_...
Given $d\in \mathbb{Z}_{\geq 2}$, for every $\kappa=(k_1,\dots,k_n) \in \mathbb{Z}^{n}$ such that $k...
Proceedings of The First Symposium on Non-Linear Analysis : CONVEXITY, CHAOS AND FRACTALS / edited b...
Proceedings of The First Symposium on Non-Linear Analysis : CONVEXITY, CHAOS AND FRACTALS / edited b...
Let S be a Desarguesian (t-1)-spread of PG(rt-1,q), $\Pi$. It is known that the Plucker embedding of...
Given $d\in \mathbb{Z}_{\geq 2}$, for every $\kappa=(k_1,\dots,k_n) \in \mathbb{Z}^{n}$ such that $k...
AbstractWe define Frobenius incidence varieties by means of the incidence relation of Frobenius imag...
Let BG be the classifying space of an algebraic group over the complex field C. We compute a new sta...
AbstractLet Vn,d⊆PN, for N:=(n+dn)−1, be the order-d Veronese embedding of Pn, Xn,d:=T(Vn,d)⊆PN the ...