In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin
summary:We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet $...
Journal of Functional Analysis 266 (2014) 5467-5492We study the existence of solutions to the fracti...
Let Δ$_{Ωε}$ be the Dirichlet Laplacian in the domain Ωε := Ω \ (∪$_{i}$D$_{iε}$). Here Ω ⊂ R$^{n}$a...
We obtain estimates for convergence rates of the eigenelements (λ", u") for the Laplace operator in ...
In this article we study eigenvalues and minimizers of a fractional non-standard growth problem. We ...
By means of the two-scale convergence method, we investigate the asymptotic behavior of eigenvalues ...
In this paper we investigate homogenization results for the principal eigenvalue problem associated ...
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a b...
38 pagesInternational audienceWe consider the eigenvalue problem for the {\it fractional $p-$Laplaci...
AbstractIn this paper, we study reiterated homogenization for equations of the form −div(aɛ(x,Duɛ))=...
Let N ≥ 2 be an integer. For each real number s ∈ (0, 1) we denote by (−∆) s the corresponding fract...
AbstractIn this paper we study spectral estimates of the p-Laplace Neumann operator in conformal reg...
AbstractThis paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues for...
We study various lower and upper estimates for the first eigenvalue of Dirichlet Laplacians defined ...
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a ...
summary:We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet $...
Journal of Functional Analysis 266 (2014) 5467-5492We study the existence of solutions to the fracti...
Let Δ$_{Ωε}$ be the Dirichlet Laplacian in the domain Ωε := Ω \ (∪$_{i}$D$_{iε}$). Here Ω ⊂ R$^{n}$a...
We obtain estimates for convergence rates of the eigenelements (λ", u") for the Laplace operator in ...
In this article we study eigenvalues and minimizers of a fractional non-standard growth problem. We ...
By means of the two-scale convergence method, we investigate the asymptotic behavior of eigenvalues ...
In this paper we investigate homogenization results for the principal eigenvalue problem associated ...
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a b...
38 pagesInternational audienceWe consider the eigenvalue problem for the {\it fractional $p-$Laplaci...
AbstractIn this paper, we study reiterated homogenization for equations of the form −div(aɛ(x,Duɛ))=...
Let N ≥ 2 be an integer. For each real number s ∈ (0, 1) we denote by (−∆) s the corresponding fract...
AbstractIn this paper we study spectral estimates of the p-Laplace Neumann operator in conformal reg...
AbstractThis paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues for...
We study various lower and upper estimates for the first eigenvalue of Dirichlet Laplacians defined ...
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a ...
summary:We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet $...
Journal of Functional Analysis 266 (2014) 5467-5492We study the existence of solutions to the fracti...
Let Δ$_{Ωε}$ be the Dirichlet Laplacian in the domain Ωε := Ω \ (∪$_{i}$D$_{iε}$). Here Ω ⊂ R$^{n}$a...