Se demuestra una estimacion a priori de las segundas derivadas de una solucion de la ecuacion linearizada de Monge-Ampere.Fil: Gutierrez, Cristian Enrique. Temple University; Estados UnidosFil: Tournier, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Purdue University; Estados Unido
We consider a class of second order ultraparabolic differential equations with measurable coefficien...
We prove De Giorgi-Nash-Moser Theory using a geometric approach.Comment: 14 pages, 1 figur
AbstractWe consider a class of second order ultraparabolic differential equations in the form∂tu=∑i,...
summary:In this review article we present an overview on some a priori estimates in $L^p$, $p>1$, re...
With the aim of obtaining at least Cordes-Nirenberg, Schauder and Calderon-Zygmund estimates for sol...
In this paper we are interested in pointwise regularity of solutions to elliptic equations. In a fir...
AbstractWe obtain improved estimates of the Keller–Osserman type for second-order elliptic semilinea...
summary:Regularity results for elliptic systems of second order quasilinear PDEs with nonlinear grow...
For a C2 function u and an elliptic operator L, we prove a quantitative estimate for the derivative ...
AbstractThis article concerns optimal estimates for nonhomogeneous degenerate elliptic equation with...
AbstractIn the present paper we consider the Dirichlet problem for quasilinear nonuniformly paraboli...
By using differential inequalities, an essentially optimal L∞(R,D(A)) bound of the unique bounded so...
By constructing appropriate smooth, possibly non-convex supersolutions, we establish sharp lower bou...
Se demuestra una estimacion a priori de las segundas derivadas de una solucion de la ecuacion linear...
AbstractIn this paper the derivatives of the solution of an initial boundary value problem for a non...
We consider a class of second order ultraparabolic differential equations with measurable coefficien...
We prove De Giorgi-Nash-Moser Theory using a geometric approach.Comment: 14 pages, 1 figur
AbstractWe consider a class of second order ultraparabolic differential equations in the form∂tu=∑i,...
summary:In this review article we present an overview on some a priori estimates in $L^p$, $p>1$, re...
With the aim of obtaining at least Cordes-Nirenberg, Schauder and Calderon-Zygmund estimates for sol...
In this paper we are interested in pointwise regularity of solutions to elliptic equations. In a fir...
AbstractWe obtain improved estimates of the Keller–Osserman type for second-order elliptic semilinea...
summary:Regularity results for elliptic systems of second order quasilinear PDEs with nonlinear grow...
For a C2 function u and an elliptic operator L, we prove a quantitative estimate for the derivative ...
AbstractThis article concerns optimal estimates for nonhomogeneous degenerate elliptic equation with...
AbstractIn the present paper we consider the Dirichlet problem for quasilinear nonuniformly paraboli...
By using differential inequalities, an essentially optimal L∞(R,D(A)) bound of the unique bounded so...
By constructing appropriate smooth, possibly non-convex supersolutions, we establish sharp lower bou...
Se demuestra una estimacion a priori de las segundas derivadas de una solucion de la ecuacion linear...
AbstractIn this paper the derivatives of the solution of an initial boundary value problem for a non...
We consider a class of second order ultraparabolic differential equations with measurable coefficien...
We prove De Giorgi-Nash-Moser Theory using a geometric approach.Comment: 14 pages, 1 figur
AbstractWe consider a class of second order ultraparabolic differential equations in the form∂tu=∑i,...