Olivine ((Mg,Fe)2SiO4) has been extensively explored as an active bed material for catalytic cracking of tars during gasification of biomass in dual fluidized bed reactors. It is known that both the elemental composition, addition of Fe and high temperature calcinations influence the catalytic properties of this mineral. However, it is not clear how olivine responds to the fairly hostile environments present during gasification or what chemical state Fe takes during operation. We have investigated the stability of Austrian olivine under model conditions, resembling those in a gasifier. Powder samples were heated to 750 °C in a quartz-tube flow-reactor and sequentially exposed to oxidizing (O2, H2O, CO2) or reducing gases (CO, H2) or mixture...