Organic materials provide a unique platform for exploiting the spin of the electron—a field dubbed organic spintronics. Originally, this was mostly motivated by the notion that because of weak spin-orbit coupling, due to the small mass elements in organics and small hyperfine field coupling, organic matter typically displays a very long electron spin coherence time. More recently, however, it was found that organics provide a special class of spintronic materials for many other reasons—several of which are discussed throughout this issue. Over the past decade, there has been a growing interest in utilizing the molecular spin state as a quantum of information, aiming to develop multifunctional molecular spintronics for memory, sensing, and l...