Modeling the stochastic evolution of a large-scale fleet or network generally proves to be challenging. This difficulty may be compounded through complex relationships between various assets in the network. Although a great number of probabilistic graph-based models (e.g., Bayesian networks) have been developed recently to describe the behavior of single assets, one can find significantly fewer approaches addressing a fully integrated network. It is proposed an extension to the standard dynamic Bayesian network (DBN) by introducing an additional dimension for multiple elements. These elements are then linked through a set of covariates that translate the probabilistic dependencies. A Markov chain is utilized to model the elements and develo...