Particle migration is a relevant transport mechanism whenever suspensions flow in channels with gap size comparable to particle dimensions (e.g. microfluidic devices). Several theoretical as well as experimental studies have been performed on this topic, showing that the occurring of this phenomenon and the migration direction are related to particle size, flow rate, and the na ture of the suspending liquid.In this work we perform a systematic analysis on the migration of a single particle in a sheared viscoelastic fluid through 2D finite element simulations in a Couette planar geometry. To focus on the effects of viscoelasticity alone, inertia is neglected. The suspending medium is modeled as a Giesekus fluid.An ALE particle mover is combi...