This article concerns the maximal synthesis for Hennessy-Milner Logic on Kripke structures with labeled transitions. We formally define, and prove the validity of, a theoretical framework that modifies a Kripke model to the least possible extent in order to satisfy a given HML formula. Applications of this work can be found in the field of controller synthesis and supervisory control for discrete-event systems. Synthesis is realized technically by first projecting the given Kripke model onto a bisimulation-equivalent partial tree representation, thereby unfolding up to the depth of the synthesized formula. Operational rules then define the required adaptations upon this structure in order to achieve validity of the synthesized formula. Synt...