Understanding and modeling the dynamics of pedestrian crowds can help with designing and increasing the safety of civil facilities. A key feature of crowds is its intrinsic stochasticity, appearing even under very diluted conditions, due to the variability in individual behaviours. Individual stochasticity becomes even more important under densely crowded conditions, since it can be nonlinearly magnified and may lead to potentially dangerous collective behaviours. To understand quantitatively crowd stochasticity, we study the real-life dynamics of a large ensemble of pedestrians walking undisturbed, and we perform a statistical analysis of the fully-resolved pedestrian trajectories obtained by a year-long high-resolution measurement campaig...