This paper analyzes to what extent it is possible to efficiently reduce the number of clauses in NP-hard satisfiability problems, without changing the answer. Upper and lower bounds are established using the concept of kernelization. Existing results show that if NP is not contained in coNP/poly, no efficient preprocessing algorithm can reduce n-variable instances of CNF-SAT with d literals per clause, to equivalent instances with O(n^{d-e}) bits for any e > 0. For the Not-All-Equal SAT problem, a compression to size \~O(n^{d-1}) exists. We put these results in a common framework by analyzing the compressibility of binary CSPs. We characterize constraint types based on the minimum degree of multivariate polynomials whose roots correspond to...