We propose a streaming algorithm, based on the minimal description length (MDL) principle, for extracting non-redundant sequential patterns. For static databases, the MDL-based approach that selects patterns based on their capacity to compress data rather than their frequency, was shown to be remarkably effective for extracting meaningful patterns and solving the redundancy issue in frequent itemset and sequence mining. The existing MDL-based algorithms, however, either start from a seed set of frequent patterns, or require multiple passes through the data. As such, the existing approaches scale poorly and are unsuitable for large datasets. Therefore, our main contribution is the proposal of a new, streaming algorithm, called Zips, that doe...