Motivated by an application in wireless random-access networks, we study a class of polling systems with Markovian routing, in which the server visits the queues in an order governed by a discrete-time Markov chain. Assuming that the service disciplines at each of the queues fall in the class of branching-type service disciplines, we derive a functional equation for (the probability generating function of) the joint queue length distribution conditioned on a point in time when the server visits a certain queue. From this functional equation, expressions for the (cross-)moments of the queue lengths follow. We also derive a pseudo-conservation law for this class of polling systems. Using these results, we compute expressions for certain syste...