One major open conjecture in the area of critical random graphs, formulated by statistical physicists, and supported by a large amount of numerical evidence over the last decade [23, 24, 28, 63] is as follows: for a wide array of random graph models with degree exponent $\tau\in (3,4)$, distances between typical points both within maximal components in the critical regime as well as on the minimal spanning tree on the giant component in the supercritical regime scale like $n^{(\tau-3)/(\tau-1)}$. In this paper we study the metric space structure of maximal components of the multiplicative coalescent, in the regime where the sizes converge to excursions of L\'evy processes "without replacement" [10], yielding a completely new class of limiti...