A dual-function catalyst particle which integrates the exothermic oxidative coupling and endothermic steam reforming of methane for the simultaneous autothermal production of ethylene and synthesis gas has been designed and studied by detailed numerical simulations. Compared to conventional oxidative coupling of methane, the introduction of a catalytic reforming activity signifantly increases the methane conversion without deteriorating the productivity towards the desired ethylene and ethane. Moreover, the presence of an intra-particle heat sink enables local autothermal operation, opening the possibility to couple these reactions in a packed bed membrane reactor with improved product yield. It is proposed to use a catalyst particle in whi...