In modern cryptography, the problem of secure multiparty computation is about the cooperation between mutually distrusting parties computing a given function. Each party holds some private information that should remain secret as much as possible throughout the computation. A large body of research initiated in the early 1980's has shown that any computable function can be evaluated using secure multiparty computation. Though these feasibility results are general, their applicability in practical situations is rather unsatisfactory. This thesis concerns the study of two particular cryptographic primitives with focus on efficiency. The first primitive studied is a generalization of verifiable shuffles of homomorphic encryptions, where the sh...