Long-term adaptation of soft tissues is realized through growth and remodeling (G&R). Mathematical models are powerful tools in testing hypotheses on G&R and supporting the design and interpretation of experiments. Most theoretical G&R studies concentrate on description of either growth or remodeling. Our model combines concepts of remodeling of collagen recruitment stretch and orientation suggested by other authors with a novel model of general 3D growth. We translate a growth-induced volume change into a change in shape due to the interaction of the growing tissue with its environment. Our G&R model is implemented in a finite element package in 3D, but applied to two rotationally symmetric cases, i.e. the adaptation towards the homeostati...