We consider a system of parallel queues with Poisson arrivals and exponentially distributed service requirements. The various queues are coupled through their service rates, causing a complex dynamic interaction. Specifically, the system consists of one primary queue and several secondary queues whose service rates depend on whether the primary queue is empty or not. Conversely, the service rate of the primary queue depends on which of the secondary queues are empty. An important special case arises when the service rates satisfy a specific relationship so that the various queues form a work-conserving system. This case is, in fact, equivalent to a so-called Generalized Processor Sharing (GPS) system. GPS-based scheduling algorithms have em...