Boolean equation systems (BESs) have been used to encode several complex verification problems, including model checking and equivalence checking. We introduce the concepts of strong bisimulation and idempotence-identifying bisimulation for BESs, and we prove that these can be used for minimising BESs prior to solving these. Our results show that large reductions of the BESs may be obtained efficiently. Minimisation is rewarding for BESs with non-trivial alternations: the time required for solving the original BES mostly exceeds the time required for quotienting plus the time for solving the quotient. Furthermore, we provide a verification example that demonstrates that bisimulation minimisation of a process prior to encoding the verificati...