Predicting the mean cycle time as a function of throughput and product mix is helpful in making the production planning for cluster tools. To predict the mean cycle time, detailed simulation models may be used. However, detailed models require much development time, and it may not be possible to estimate all model parameters. Instead of a detailed simulation model, we propose to use a so-calledaggregate model to predict the mean cycle time as a function of throughput and product mix. The aggregate model is a lumped-parameter representation of the queueing system. We estimate the parameters of the aggregate model from arrival and departure data using the Effective Process Time (EPT) concept. The proposedmethod is illustrated for a simulation...