In this paper we study a system consisting of c parallel servers with possibly different service rates. Jobs arrive according to a Poisson stream and generate an exponentially distributed workload. An arriving job joins the shortest queue, where in case of multiple shortest queues, one of these queues is selected according to some arbitrary probability distribution. If the maximal difference between the lengths of the c queues exceeds some threshold value T, then one job switches from the longest to the shortest queue, where in case of multiple longest queues, the queue loosing a job is selected according to some arbitrary probability distribution. It is shown that the matrix-geometric approach is very well suited to find the equilibrium pr...