An asymptotic analysis is presented of the short-time behavior of second-order temporal velocity structure functions and Eulerian acceleration correlations in a frame that moves with the local mean velocity of the turbulent flow field. Expressions in closed-form are derived which cover the viscous and inertial subranges. They apply to general anisotropic turbulence at large Reynolds number obeying Kolmogorov theory. Previously published results for isotropic turbulence emerge as special cases. In the derivation use is made of the approximation of temporarily frozen turbulence proposed by Tennekes. It is shown to be valid under conditions not other than those for which the Kolmogorov hypotheses hold. The effects of intermittency appear to be...