Inhalt dieser Arbeit ist eine Erweiterung der Hopfalgebrastruktur der Feynmangraphen und Renormierung von Connes und Kreimer. Zusätzlich wird eine Struktur auf faktoriell wachsenden Potenzreihen eingeführt, die deren asymptotisches Wachstum beschreibt und die kompatibel mit der Hopfalgebrastruktur ist. Die Hopfalgebrastruktur auf Graphen erlaubt die explizite Enumeration von Graphen mit Einschränkungen in Bezug auf die erlaubten Untergraphen. Im Fall der Feynmangraphen wird zusätzlich eine algebraische Verbandstruktur eingeführt, die weitere eindeutige Eigenschaften von physikalischen Quantenfeldtheorien aufdeckt. Der Differenzialring der faktoriell divergenten Potenzreihen erlaubt es asymptotische Resultate von implizit definierten Pot...
Abstract We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic s...
42 pages, 26 figures in PDF format, extended version of a talk given at the conference "Combinatoric...
What Feynman graphs are and perturbative quantum gauge theories Mathematical structure of renormaliz...
We review Kreimer's construction of a Hopf algebra associated to the Feynman graphs of a perturbativ...
The paper aims at investigating perturbative quantum field theory (pQFT) in the approach of Epstein ...
Dans cette thèse, nous nous intéressons à la renormalisation de Connes et Kreimer dans le contexe de...
Renormalization theory is a venerable subject put to daily use in many branches of physics. Here, we...
Abstract: We showed in Part I that the Hopf algebra H of Feynman graphs in a given QFT is the algebr...
International audienceThese are the notes of five lectures given at the Summer School {\em Geometric...
We discuss shuffle identities between Feynman graphs using the Hopf algebra structure of perturbativ...
The free energy of a multicomponent scalar field theory is considered as a functional W[G,J] of the ...
Abstract. This paper will describe how combinatorial interpretations can help us understand the alge...
This thesis addresses a number of enumerative problems that arise in the context of quantum field th...
These are the notes of five lectures given at the Summer School Geometric and Topological Methods fo...
Inhalt dieser Arbeit ist eine Erweiterung der Hopfalgebrastruktur der Feynmangraphen und Renormierun...
Abstract We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic s...
42 pages, 26 figures in PDF format, extended version of a talk given at the conference "Combinatoric...
What Feynman graphs are and perturbative quantum gauge theories Mathematical structure of renormaliz...
We review Kreimer's construction of a Hopf algebra associated to the Feynman graphs of a perturbativ...
The paper aims at investigating perturbative quantum field theory (pQFT) in the approach of Epstein ...
Dans cette thèse, nous nous intéressons à la renormalisation de Connes et Kreimer dans le contexe de...
Renormalization theory is a venerable subject put to daily use in many branches of physics. Here, we...
Abstract: We showed in Part I that the Hopf algebra H of Feynman graphs in a given QFT is the algebr...
International audienceThese are the notes of five lectures given at the Summer School {\em Geometric...
We discuss shuffle identities between Feynman graphs using the Hopf algebra structure of perturbativ...
The free energy of a multicomponent scalar field theory is considered as a functional W[G,J] of the ...
Abstract. This paper will describe how combinatorial interpretations can help us understand the alge...
This thesis addresses a number of enumerative problems that arise in the context of quantum field th...
These are the notes of five lectures given at the Summer School Geometric and Topological Methods fo...
Inhalt dieser Arbeit ist eine Erweiterung der Hopfalgebrastruktur der Feynmangraphen und Renormierun...
Abstract We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic s...
42 pages, 26 figures in PDF format, extended version of a talk given at the conference "Combinatoric...
What Feynman graphs are and perturbative quantum gauge theories Mathematical structure of renormaliz...