Práce je zaměřena na možnost využití extrémních učících se strojů a sítí s ozvěnou stavu pro předpověď časových řad s možností akcelerace pomocí grafických procesorů. Takovéto předpovědi jsou v dnešní době každodenní součástí života naprosté většiny lidí, a to vzhledem k jejich využití v předpovědích počasí, vývoje finančního a akciového trhu, spotřeby energie a mnohých dalších věcí. Práce uvádí teoretický podklad extrémních učících se strojů a sítí s ozvěnou stavu, jejichž hlavní výhodou je náhodná volba většiny parametrů neuronové sítě a iterativního postupu dopočtu parametrů, programovací nástroje k jejich realizaci, jako je knihovna ND4J a CUDA toolkit, tvorbu vlastního programu, a nakonec i test doby zpracování a přesnosti.Thesis is ai...