51 pages, 14 figures, 1 table, 91 references. Other author's papers can be downloaded at http://www.denys-dutykh.com/International audienceIn the present manuscript we consider the problem of dispersive wave simulation on a rotating globally spherical geometry. In this Part IV we focus on numerical aspects while the model derivation was described in Part III. The algorithm we propose is based on the splitting approach. Namely, equations are decomposed on a uniform elliptic equation for the dispersive pressure component and a hyperbolic part of shallow water equations (on a sphere) with source terms. This algorithm is implemented as a two-step predictor-corrector scheme. On every step we solve separately elliptic and hyperbolic problems. The...