En esta Tesis obtenemos resultados estructurales generales sobre el comportamiento asintótico de sucesiones de cuerpos de funciones sobre cuerpos perfectos en general y de torres de cuerpos de funciones sobre cuerpos finitos en particular. Abordamos el problema de ver bajo qué condiciones, las ecuaciones que generan recursivamente una sucesión definen una torre. Damos condiciones suficientes para garantizar estimaciones no triviales del número de lugares racionales que hay en cada paso de una sucesión. Damos ejemplos concretos mostrando que varios ejemplos conocidos son casos particulares de nuestros resultados generales. Estudiamos condiciones para determinar la finitud del espacio de ramificación en cierta clase de torres de tipo K...
AbstractIn this paper we state and explore a connection between graph theory and the theory of recur...
We discuss the asymptotic behaviour of the genus and the number of rational places in towers of func...
For a tower F 1 ⊆ F 2 ⊆ ⋯ of algebraic function fields F i/F q, define τ := lim i→∞ N(F i)/g(F i), w...
Fil: Navarro Oyola, Horacio. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argen...
In this work, we give sucient conditions in order to have finite ramication locus in sequences of fu...
AbstractFor a towerF1⊆F2⊆ ··· of algebraic function fieldsFi/Fq, define λ = limi→∞N(Fi)/g(Fi), where...
AbstractWe discuss the asymptotic behaviour of the genus and the number of rational places in towers...
We consider a tower of function fields F = (Fn)n≥0 over a finite field Fq and a finite extension E/F...
In this paper, we consider a tower of function fields F = (F-n)(n >= 0) over a finite field F-q and ...
We introduce the notion of the dual tower of a recursive tower of function fields over a finite fiel...
We construct Galois towers with good asymptotic properties over any non-prime finite field Fℓ; that ...
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007.Explicit towers of algebraic ...
This is a thesis in Algebraic Number Theory, concerned with the study of bounds for the Ihara functi...
In 1995 Garcia and Stichtenoth gave explicit constructions of sequences of function fields over the ...
This is a thesis in Algebraic Number Theory, concerned with the study of bounds for the Ihara functi...
AbstractIn this paper we state and explore a connection between graph theory and the theory of recur...
We discuss the asymptotic behaviour of the genus and the number of rational places in towers of func...
For a tower F 1 ⊆ F 2 ⊆ ⋯ of algebraic function fields F i/F q, define τ := lim i→∞ N(F i)/g(F i), w...
Fil: Navarro Oyola, Horacio. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argen...
In this work, we give sucient conditions in order to have finite ramication locus in sequences of fu...
AbstractFor a towerF1⊆F2⊆ ··· of algebraic function fieldsFi/Fq, define λ = limi→∞N(Fi)/g(Fi), where...
AbstractWe discuss the asymptotic behaviour of the genus and the number of rational places in towers...
We consider a tower of function fields F = (Fn)n≥0 over a finite field Fq and a finite extension E/F...
In this paper, we consider a tower of function fields F = (F-n)(n >= 0) over a finite field F-q and ...
We introduce the notion of the dual tower of a recursive tower of function fields over a finite fiel...
We construct Galois towers with good asymptotic properties over any non-prime finite field Fℓ; that ...
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007.Explicit towers of algebraic ...
This is a thesis in Algebraic Number Theory, concerned with the study of bounds for the Ihara functi...
In 1995 Garcia and Stichtenoth gave explicit constructions of sequences of function fields over the ...
This is a thesis in Algebraic Number Theory, concerned with the study of bounds for the Ihara functi...
AbstractIn this paper we state and explore a connection between graph theory and the theory of recur...
We discuss the asymptotic behaviour of the genus and the number of rational places in towers of func...
For a tower F 1 ⊆ F 2 ⊆ ⋯ of algebraic function fields F i/F q, define τ := lim i→∞ N(F i)/g(F i), w...