Structure is fundamental in shaping the types of computations that neuronal circuits can perform. Explaining the laws that determine the connectivity properties of brain networks and their implications in neuronal dynamics is therefore an important step in the understanding of how brains operate. The local circuits of cortex, which are considered to carry out the basic and essential computations for brain functioning, exhibit a highly stereotyped and organized architecture, which is, in very general terms, conserved across different species, brain areas and individuals. An appropriate way to mathematically represent this family of networks is by means of models defined by a set of connectivity laws that include a certain degree of randomnes...