Some financial time series exhibit short periods of explosive local trends followed by an abrupt decline. Such trends can be a result of speculative bubble phenomena. A bubble is formed when investors’ future profits expectations influence the present market value of securities. Mixed causal-noncausal autoregressive processes (MAR) are able to better capture such behavior in comparison to standard causal ARIMA models. In the first part of this work we propose an alternative distribution (Voigt) to model the disturbances in the MAR processes. The Voigt, a convolution of Gaussian and Cauchy distributions, is used in atomic and molecular spectroscopy, and is more flexible than other heavy-tail distributions. The second part of this work extend...