This paper deals with the stochastic modeling of a general class of heterogeneous population dynamics structured by discrete subgroups. Such processes generalize classical multitype Birth- Death processes by allowing swap events, i.e. transfers from one subgroup to another. The variability of the environment is also included and the population evolution is not Markovian. We propose a new representation of the population based on its jump measure, characterized as a multivariate counting process with specific support conditions, and which together with the population defines a Birth-Death-Swap (BDS) system. We first prove a general result, on the construction by strong domination of multivariate counting processes solutions of stochastic dif...
Birth-death processes are discrete-state, continuous-time Markov jump processes with one-step jumps....
Abstract-In this work, we deal with the reduction of a time discrete model for a population distribu...
This thesis treats birth and death processes in random environments. They are modelled by Markov pro...
33 pages, 2 figuresThis paper deals with the stochastic modeling of a class of heterogeneous populat...
International audienceWe analyze a birth, migration and death stochastic process modeling the dynami...
Many important stochastic counting models can be written as general birth-death processes (BDPs). BD...
In this paper we study the iterated birth process of which we examine the first-passage time distri...
In this paper, we consider the large population limit of an age and characteristic-structured stocha...
For a birth-death process N(t) with a reflecting state at 0 we propose a method able to construct a ...
The first chapter concerns monotype population models. We first study general birth and death proces...
Abstract. In this article, we consider time-changed models of population evolution X f (t) = X (Hf ...
AbstractWe propose a stochastic process model for a population of individuals of two types. Type-I i...
We propose a stochastic process model for a population of individuals of two types. Type-I individua...
This dissertation discusses the construction of some stochastic models for population dynamics with ...
This article studies the quasi-stationary behaviour of multidimensional birth and death processes, m...
Birth-death processes are discrete-state, continuous-time Markov jump processes with one-step jumps....
Abstract-In this work, we deal with the reduction of a time discrete model for a population distribu...
This thesis treats birth and death processes in random environments. They are modelled by Markov pro...
33 pages, 2 figuresThis paper deals with the stochastic modeling of a class of heterogeneous populat...
International audienceWe analyze a birth, migration and death stochastic process modeling the dynami...
Many important stochastic counting models can be written as general birth-death processes (BDPs). BD...
In this paper we study the iterated birth process of which we examine the first-passage time distri...
In this paper, we consider the large population limit of an age and characteristic-structured stocha...
For a birth-death process N(t) with a reflecting state at 0 we propose a method able to construct a ...
The first chapter concerns monotype population models. We first study general birth and death proces...
Abstract. In this article, we consider time-changed models of population evolution X f (t) = X (Hf ...
AbstractWe propose a stochastic process model for a population of individuals of two types. Type-I i...
We propose a stochastic process model for a population of individuals of two types. Type-I individua...
This dissertation discusses the construction of some stochastic models for population dynamics with ...
This article studies the quasi-stationary behaviour of multidimensional birth and death processes, m...
Birth-death processes are discrete-state, continuous-time Markov jump processes with one-step jumps....
Abstract-In this work, we deal with the reduction of a time discrete model for a population distribu...
This thesis treats birth and death processes in random environments. They are modelled by Markov pro...