International audienceThis work focuses on the asymptotic behavior of the density in small time of a stochastic differential equation driven by a truncated α-stable process with index α ∈ (0, 2). We assume that the process depends on a parameter β = (θ, σ)T and we study the sensitivity of the density with respect to this parameter. This extends the results of [E. Clément and A. Gloter, Local asymptotic mixed normality property for discretely observed stochastic dierential equations driven by stable Lévy processes. Stochastic Process. Appl. 125 (2015) 2316–2352.] which was restricted to the index α ∈ (1, 2) and considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus, we obtain the representation of ...