Up to now, two parallel trends have emerged in the developement and practice of statistical data processing. The first one involves methods that consider the possibility of a probalilistic interpretation ; the second one uses a rather large group of automatic clustering methods applied within a purely geometrical framework. Our study is set halfway betwen those two approach ; indeed the links that exist betwen the probabilistic approach and the geometrical approach have enabled us to interpret automatic clustering methods in probabilistic terms, to propose new criteria that can improve the quality of the partition ; we then extend the study of these links to cases were the data involve two sets ; we show how the cross clustering can be seen...
This thesis proposes three original contributions for the clustering of particular types of data: mu...
Des algorithmes génétiques (GA) et des techniques de " clustering " sont utilisés pour étudier et cl...
<div><p>Four of the most common limitations of the many available clustering methods are: i) the lac...
Up to now, two parallel trends have emerged in the developement and practice of statistical data pro...
The relations between automatic clustering methods and inferentiel statistical models have mostely ...
Dans la première partie de cette thèse nous passons en revue la classification par modèle de mélange...
aWe propose several clustering methods which are specific of binary and categorical data. Each time,...
This work focuses on the problem of point and variable clustering, that is the grouping of either si...
Cette thèse propose une contribution originale pour la classification non supervisée de données qual...
Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non superv...
This habilitation thesis retraces works focusing mainly on model based clustering and the related is...
The reported works take place in the statistical framework of model-based clustering. We particularl...
Il existe des situations de modélisation statistique pour lesquelles le problème classique de classi...
This thesis studies the Gaussian mixture model-based clustering approaches and the criteria of model...
Four of the most common limitations of the many available clustering methods are: i) the lack of a p...
This thesis proposes three original contributions for the clustering of particular types of data: mu...
Des algorithmes génétiques (GA) et des techniques de " clustering " sont utilisés pour étudier et cl...
<div><p>Four of the most common limitations of the many available clustering methods are: i) the lac...
Up to now, two parallel trends have emerged in the developement and practice of statistical data pro...
The relations between automatic clustering methods and inferentiel statistical models have mostely ...
Dans la première partie de cette thèse nous passons en revue la classification par modèle de mélange...
aWe propose several clustering methods which are specific of binary and categorical data. Each time,...
This work focuses on the problem of point and variable clustering, that is the grouping of either si...
Cette thèse propose une contribution originale pour la classification non supervisée de données qual...
Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non superv...
This habilitation thesis retraces works focusing mainly on model based clustering and the related is...
The reported works take place in the statistical framework of model-based clustering. We particularl...
Il existe des situations de modélisation statistique pour lesquelles le problème classique de classi...
This thesis studies the Gaussian mixture model-based clustering approaches and the criteria of model...
Four of the most common limitations of the many available clustering methods are: i) the lack of a p...
This thesis proposes three original contributions for the clustering of particular types of data: mu...
Des algorithmes génétiques (GA) et des techniques de " clustering " sont utilisés pour étudier et cl...
<div><p>Four of the most common limitations of the many available clustering methods are: i) the lac...