Named Entity Recognition (NER) plays an important role in a variety of online information management tasks including text categorization, document clustering, and faceted search. While recent NER systems can achieve near-human performance on certain documents like news articles, they still remain highly domain-specific and thus cannot effectively identify entities such as original technical concepts in scientific documents. In this work, we propose novel approaches for NER on distinctive document collections (such as scientific articles) based on n-grams inspection and classification. We design and evaluate several entity recognition features-ranging from well-known part-of-speech tags to n-gram co-location statistics and decision trees-to ...