The detection and correction of grammatical errors still represent very hard problems for modern error-correction systems. As an example, the top-performing systems at the preposition correction challenge CoNLL-2013 only achieved a F1 score of 17%. In this paper, we propose and extensively evaluate a series of approaches for correcting prepositions, analyzing a large body of high-quality textual content to capture language usage. Leveraging n-gram statistics, association measures, and machine learning techniques, our system is able to learn which words or phrases govern the usage of a specific preposition. Our approach makes heavy use of n-gram statistics generated from very large textual corpora. In particular, one of our key features is t...