Precise manipulation of water is a key step in numerous natural and synthetic processes. Here, a new flexible and transparent hierarchical structure is determined that allows ultra-dexterous manipulation and lossless transfer of water droplets. A 3D nanomesh is fabricated in one step by scalable electrospinning of low-cost polystyrene solutions. Optimal structures are composed of a mesh of dense nanofiber layers vertically separated by isolated mesoporous microbeads. This results in a highly adhesive superhydrophobic wetting that perfectly mimics rose petal-like structures. Structural-functional correlations are obtained over all key process parameters enabling robust tailoring of the wetting properties from hydrophilic to lotus-like Cassie...