We introduce a dimension adaptive sparse grid combination tech- nique for the machine learning problems of classification and regres- sion. A function over a d-dimensional space, which assumedly de- scribes the relationship between the features and the response vari- able, is reconstructed using a linear combination of partial functions that possibly depend only on a subset of all features. The partial functions are adaptively chosen during the computational procedure. This approach (approximately) identifies the ANOVA decomposition of the underlying problem. Experiments on synthetic data, where the structure is known, show the advantages of a dimension adaptive com- bination technique in run time behaviour, approximation errors, and interp...
Sparse grids, combined with gradient penalties provide an attractive tool for regularised least squa...
AbstractSparse grids allow one to employ grid-based discretization methods in data-driven problems. ...
The expansion of densities or regression functions into a complete set of basis functions can be use...
We introduce a dimension adaptive sparse grid combination technique for the machine learning problem...
We present a dimension adaptive sparse grid combination technique for the machine learning problem o...
Generative dimensionality reduction methods play an important role in machine learning applications ...
Sparse grids, as studied by Zenger and Griebel in the last 10 years have been very successful in the...
In this paper, we propose the use of (adaptive) nonlinear ap-proximation for dimensionality reductio...
For low-dimensional data sets with a large amount of data points, standard kernel methods are usuall...
Abstract The technique of sparse grids allows to overcome the curse of dimension-ality, which preven...
Adaptive dynamical systems based on finite impulse response (FIR) models constitute an important par...
The hybrid ML-FETI-DP algorithm combines the advantages of adaptive coarse spa-ces in domain decompo...
In pattern recognition and machine learning, a classification problem refers to finding an algorithm...
This paper introduces an elemental building block which combines Dictionary Learning and Dimension R...
In pattern recognition and machine learning, a classification problem refers to finding an algorithm...
Sparse grids, combined with gradient penalties provide an attractive tool for regularised least squa...
AbstractSparse grids allow one to employ grid-based discretization methods in data-driven problems. ...
The expansion of densities or regression functions into a complete set of basis functions can be use...
We introduce a dimension adaptive sparse grid combination technique for the machine learning problem...
We present a dimension adaptive sparse grid combination technique for the machine learning problem o...
Generative dimensionality reduction methods play an important role in machine learning applications ...
Sparse grids, as studied by Zenger and Griebel in the last 10 years have been very successful in the...
In this paper, we propose the use of (adaptive) nonlinear ap-proximation for dimensionality reductio...
For low-dimensional data sets with a large amount of data points, standard kernel methods are usuall...
Abstract The technique of sparse grids allows to overcome the curse of dimension-ality, which preven...
Adaptive dynamical systems based on finite impulse response (FIR) models constitute an important par...
The hybrid ML-FETI-DP algorithm combines the advantages of adaptive coarse spa-ces in domain decompo...
In pattern recognition and machine learning, a classification problem refers to finding an algorithm...
This paper introduces an elemental building block which combines Dictionary Learning and Dimension R...
In pattern recognition and machine learning, a classification problem refers to finding an algorithm...
Sparse grids, combined with gradient penalties provide an attractive tool for regularised least squa...
AbstractSparse grids allow one to employ grid-based discretization methods in data-driven problems. ...
The expansion of densities or regression functions into a complete set of basis functions can be use...