This paper describes a method for combining "off-the-shelf" SAT and constraint solvers for building an efficient Satisfiability Modulo Theories (SMT) solver for a wide range of theories. Our method follows the abstraction/refinement approach to simplify the implementation of custom SMT solvers. The expected performance penalty by not using an interweaved combination of SAT and theory solvers is reduced by generalising a Boolean solution of an SMT problem first via assigning don't care to as many variables as possible. We then use the generalised solution to determine a thereby smaller constraint set to be handed over to the constraint solver for a background theory. We show that for many benchmarks and real-world problems, this optimisation...