The shift action on the 2-cocycle group Z2(G,C) of a finite group G with coefficients in a finitely generated abelian group C has several useful applications in combinatorics and digital communications, arising from the invariance of a uniform distribution property of cocycles under the action. In this article, we study the shift orbit structure of the coboundary subgroup B2(G,C) of Z2(G,C). The study is placed within a well-known setting involving the Loewy and socle series of a group algebra over G. We prove new bounds on the dimensions of terms in such series. Asymptotic results on the size of shift orbits are also derived; for example, if C is an elementary abelian p-group, then almost all shift orbits in B2(G,C) are maximal-sized for l...