Raman lidar is an effective technique to retrieve the vertical distribution of atmospheric water vapor. For the first time, we present water vapor profiles retrieved by a high dynamic Raman lidar system over the Beijing area for representative cases in spring 2014, within the framework of the Aerosol Multi-wavelength Polarization Lidar Experiment project. In springtime, water vapor content over Beijing is generally low but with a strong daily variability. Its evolution is strongly coupled with winds and aerosols, with clouds also exerting a distinct impact. Northwesterly winds is found to be the most important factor impacting the temporal variability of water vapor mixing ratio (WVMR), and WVMR is found to be negatively correlated with win...