Different from the basic-level classification, the Fine-Grained Visual Categorization (FGVC) aims to classify objects belonging to the same species. Therefore, it is more challenging than the basic-level classification. Recently, significant advances have been achieved in FGVC. However, most of the existing methods require bounding boxes or part annotations for training and testing, resulting in limited usability and flexibility. To conquer these limitations, we aim to automatically detect the bounding boxes and parts for FGVC. The bounding boxes are acquired by transferring bounding boxes from training images to testing images. Based on the generated bounding boxes, we employ a multiple-layer Orientational Spatial Part (OSP) model to learn...