Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems(1-3). Here we use 34 years of atmospheric CO2 concentration measurements at Barrow, Alaska (BRW, 71 degrees N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. We use two indicators: the spring zero-crossing date of atmospheric CO2 (SZC) and the magnitude of CO2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmos...