We propose a new method for estimating the extreme quantiles for a function of several dependent random variables. In contrast with the conventional approach based on extreme value theory, we do not impose the condition that the tail of the underlying distribution admits an approximate parametric form, and, furthermore, our estimation makes use of the full observed data. The method proposed is semiparametric as no parametric forms are assumed on the marginal distributions. But we select appropriate bivariate copulas to model the joint dependence structure by taking advantage of the recent development in constructing large dimensional vine copulas. Consequently a sample quantile resulting from a large bootstrap sample drawn from the fitted j...