Multi-label text categorization is a type of text categorization, where each document is assigned to one or more categories. Recently, a series of methods have been developed, which train a classifier for each label, organize the classifiers in a partially ordered structure and take predictions produced by the former classifiers as the latter classifiers' features. These predictions-asfeatures style methods model high order label dependencies and obtain high performance. Nevertheless, the predictionsas-features methods suffer a drawback. When training a classifier for one label, the predictions-as-features methods can model dependencies between former labels and the current label, but they can't model dependencies between the curr...