聚类是在假设数据具有某种群聚结构的前提下根据观察到的无标记样本发现数据的最优划分.现有的聚类算法通常简单地导出假设结构和给定先验下最优或较优的聚类结果,体现为算法对样本分布拟合度的迭代最优化,即算法有效性.实际上,聚类的有效性取决于结构有效性、算法有效性和先验有效性3个方面的因素.基于这种考虑,提出了一种变体混合模型的聚类结构假设,以及判定聚类结构的稳定性的度量和方法,在算法有效的前提下通过单簇的分裂与合并来改进聚类结构的稳定性,并得到最终聚类结果,设计并实现了SMClus聚类算法,通过对模拟数据和真实数据的聚类实验,例证了方法的有效性.863国家高技术研究发展计划; 中国矿业大学科技基金中文核心期刊要目总览(PKU)中国科技核心期刊(ISTIC)中国科学引文数据库(CSCD)011217-2223
"集群"(cluster)概念已经成为我国区域经济和科技发展的新思维和政策工具.我国媒体中频繁出现"集群",随之也出现了概念的混...
[[abstract]]文件探勘是資料探勘加上一些基礎的語言學所構成的。文件探勘運用的技術,幾乎都與詞彙的頻率與出現篇數有關,但這兩項資訊在資料探勘中卻極少用到。目前在文件聚類的研究中,已經發展出許多...
传统K-means算法的聚类数k值事先无法确定,而且算法是随机性地选取初始聚类中心点,这样容易造成聚类结果不稳定,且准确率较低。基于SSE用来选取聚类个数k值,基于聚类中心点所在的周围区域相对比较密集...
随着信息技术的高速发展,数据量急剧增长,如何从海量的数据中提取有用的信息和知识成为当务之急。数据挖掘就是解决这个问题的新兴领域。聚类分析作为数据挖掘领域中的一个重要课题,受到了越来越多的关注。目前聚类...
聚类结果的有效性由结构有效性、算法有效性和先验知识有效性3个方面的因素决定.忽略先验知识和假设结构的有效性孤立地提升聚类算法的有效性很可能产生无效的聚类结果.现有聚类方法通常只是简单地导出假设结构下最...
数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering...
传统的数据挖掘技术如分类、聚类、关联和异常点发现等技术与OLAP技术的结合通常采用的方法是分类、聚类、关联和异常点发现的结果即为任务的终点和目标.然而事实上,在实际需求中用户不仅仅需要分类、聚类等数据...
bnAk-dIVIdE-And-MErgE聚类算法是基于dAVId等人提出的dIVIdE-And-MErgE算法的一种改进算法。dIVIdE-And-MErgE算法是一种将自顶向下的分裂方法和自底向上...
Формулируется задача определения устойчивости кластерной структуры при автоматической класс...
针对目前聚类算法不能有效的处理模糊边界点的问题,提出了一种基于真实核心点的RDBSCAN聚类算法。提出真实核心点的概念,首先在密度聚类过程中的核心点进一步处理分类,把影响聚类效果的伪核心点剔除,将剩下...
在移动通信网络环境中,如何合理地组织和存储移动对象的配置信息,从而有效地降低查询和更新代价是位置管理中的一个重要问题.将数据挖掘应用到移动计算环境中是一项具有挑战性的研究课题,具有广阔的应用前景.区域...
基於屬性相似度將樣本進行分群的技術已經被廣泛應用在許多領域,如模式識別,特徵提取和惡意行為偵測。由於此技術的重要性,很多人已經將各種分群技術利用分散式框架進行再製,例如K-means搭配Hadoop在...
R*树是目前公认查询效果很好的R树变体,但是其构造代价较原始R树增加数倍,对于插入删除和更新频繁的空间数据效果不好.为此,本文提出一种基于惰性聚类分裂技术的R树动态实现方法(LR树).惰性聚类分裂技术...
檢測某些地區是否有較高的疾病發生率,亦即群集(Cluster)現象,是近年來空間統計(Spatial Statistics)在流行病學的主要應用之一,常見的偵測方法包括SaTScan (Kulldor...
これまでに, データベースに対する検索システムは, 精度, 再現度, 速度ともにめざましく進歩した. 検索は生活のあらゆるレベルに浸透し, コモディティ化したため, 検索に対する要求も性能面はもちろん...
"集群"(cluster)概念已经成为我国区域经济和科技发展的新思维和政策工具.我国媒体中频繁出现"集群",随之也出现了概念的混...
[[abstract]]文件探勘是資料探勘加上一些基礎的語言學所構成的。文件探勘運用的技術,幾乎都與詞彙的頻率與出現篇數有關,但這兩項資訊在資料探勘中卻極少用到。目前在文件聚類的研究中,已經發展出許多...
传统K-means算法的聚类数k值事先无法确定,而且算法是随机性地选取初始聚类中心点,这样容易造成聚类结果不稳定,且准确率较低。基于SSE用来选取聚类个数k值,基于聚类中心点所在的周围区域相对比较密集...
随着信息技术的高速发展,数据量急剧增长,如何从海量的数据中提取有用的信息和知识成为当务之急。数据挖掘就是解决这个问题的新兴领域。聚类分析作为数据挖掘领域中的一个重要课题,受到了越来越多的关注。目前聚类...
聚类结果的有效性由结构有效性、算法有效性和先验知识有效性3个方面的因素决定.忽略先验知识和假设结构的有效性孤立地提升聚类算法的有效性很可能产生无效的聚类结果.现有聚类方法通常只是简单地导出假设结构下最...
数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering...
传统的数据挖掘技术如分类、聚类、关联和异常点发现等技术与OLAP技术的结合通常采用的方法是分类、聚类、关联和异常点发现的结果即为任务的终点和目标.然而事实上,在实际需求中用户不仅仅需要分类、聚类等数据...
bnAk-dIVIdE-And-MErgE聚类算法是基于dAVId等人提出的dIVIdE-And-MErgE算法的一种改进算法。dIVIdE-And-MErgE算法是一种将自顶向下的分裂方法和自底向上...
Формулируется задача определения устойчивости кластерной структуры при автоматической класс...
针对目前聚类算法不能有效的处理模糊边界点的问题,提出了一种基于真实核心点的RDBSCAN聚类算法。提出真实核心点的概念,首先在密度聚类过程中的核心点进一步处理分类,把影响聚类效果的伪核心点剔除,将剩下...
在移动通信网络环境中,如何合理地组织和存储移动对象的配置信息,从而有效地降低查询和更新代价是位置管理中的一个重要问题.将数据挖掘应用到移动计算环境中是一项具有挑战性的研究课题,具有广阔的应用前景.区域...
基於屬性相似度將樣本進行分群的技術已經被廣泛應用在許多領域,如模式識別,特徵提取和惡意行為偵測。由於此技術的重要性,很多人已經將各種分群技術利用分散式框架進行再製,例如K-means搭配Hadoop在...
R*树是目前公认查询效果很好的R树变体,但是其构造代价较原始R树增加数倍,对于插入删除和更新频繁的空间数据效果不好.为此,本文提出一种基于惰性聚类分裂技术的R树动态实现方法(LR树).惰性聚类分裂技术...
檢測某些地區是否有較高的疾病發生率,亦即群集(Cluster)現象,是近年來空間統計(Spatial Statistics)在流行病學的主要應用之一,常見的偵測方法包括SaTScan (Kulldor...
これまでに, データベースに対する検索システムは, 精度, 再現度, 速度ともにめざましく進歩した. 検索は生活のあらゆるレベルに浸透し, コモディティ化したため, 検索に対する要求も性能面はもちろん...
"集群"(cluster)概念已经成为我国区域经济和科技发展的新思维和政策工具.我国媒体中频繁出现"集群",随之也出现了概念的混...
[[abstract]]文件探勘是資料探勘加上一些基礎的語言學所構成的。文件探勘運用的技術,幾乎都與詞彙的頻率與出現篇數有關,但這兩項資訊在資料探勘中卻極少用到。目前在文件聚類的研究中,已經發展出許多...
传统K-means算法的聚类数k值事先无法确定,而且算法是随机性地选取初始聚类中心点,这样容易造成聚类结果不稳定,且准确率较低。基于SSE用来选取聚类个数k值,基于聚类中心点所在的周围区域相对比较密集...