引入序关系保持的思想,即层次聚类的簇间距离度量应该能够最大限度地维护样本点闻的原始距离排序关系.定义了样本点对序关系的概念和序关系损失度量,证明了序关系损失度量可用做聚类的目标准则函数和聚类结果质量的评价标准.利用序关系损失的概念扩展出两种簇间距离度量,实现了基于序关系保持的层次聚类算法(order-preserving based hierarchilcal clustering algorithm,OPHCLUS).实验仿真证明了OPHCLUS对聚类质量提升的有效性.国家高技术研究发展计划(863计划)资助项目; 中国矿业大学科技基金资助项目中文核心期刊要目总览(PKU)中国科技核心期刊(ISTIC)中国科学引文数据库(CSCD)0548-554
これまでに, データベースに対する検索システムは, 精度, 再現度, 速度ともにめざましく進歩した. 検索は生活のあらゆるレベルに浸透し, コモディティ化したため, 検索に対する要求も性能面はもちろん...
在移动通信网络环境中,如何合理地组织和存储移动对象的配置信息,从而有效地降低查询和更新代价是位置管理中的一个重要问题.将数据挖掘应用到移动计算环境中是一项具有挑战性的研究课题,具有广阔的应用前景.区域...
传统k-means算法由于初始聚类中心的选择是随机的,因此会使聚类结果不稳定。针对这个问题,提出一种基于离散量改进k-means初始聚类中心选择的算法。算法首先将所有对象作为一个大类,然后不断从对象数...
针对广泛存在的层次编码型数据类型,提出了层次距离的新概念,证明了相关的数学性质,并在此基础上提出并实现了新的基于层次距离计算的聚类算法HDCA(Hierarchy Distance Computing...
为了识别犯罪嫌疑人伪造和篡改的虚假身份,利用树编辑距离计算个体属性相似性,证明了树编辑距离的相关数学性质,对属性应用层次编码方法,提出了一种新的基于树编辑距离的层次聚类算法HCTED(Hierarch...
聚类是数据挖掘领域中最活跃的研究分支之一,聚类技术在其他的科学领域也有广泛的应用。迄今为止已经提出了大量的聚类算法,其中基于密度的DBSCAN算法因其很多优点而备受关注,为了减少DBSCAN的区域查询...
We survey agglomerative hierarchical clustering algorithms and discuss efficient implementations t...
The system is representing hierarchical multilevel approach of clustering and explores dynamic model...
数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering...
传统的数据挖掘技术如分类、聚类、关联和异常点发现等技术与OLAP技术的结合通常采用的方法是分类、聚类、关联和异常点发现的结果即为任务的终点和目标.然而事实上,在实际需求中用户不仅仅需要分类、聚类等数据...
K-means 演算法是一個十分普及的分類演算法,它廣泛的運用在各種工程以及科學領域上,像是影像分割(Image segmentation)、圖形識別(Pattern classification)與...
基於屬性相似度將樣本進行分群的技術已經被廣泛應用在許多領域,如模式識別,特徵提取和惡意行為偵測。由於此技術的重要性,很多人已經將各種分群技術利用分散式框架進行再製,例如K-means搭配Hadoop在...
Hierarchical clustering is a recursive partitioning of a dataset into clusters at an increasingly fi...
随着信息技术的高速发展,数据量急剧增长,如何从海量的数据中提取有用的信息和知识成为当务之急。数据挖掘就是解决这个问题的新兴领域。聚类分析作为数据挖掘领域中的一个重要课题,受到了越来越多的关注。目前聚类...
Hierarchical clustering is a recursive partitioning of a dataset into clusters at an increasingly fi...
これまでに, データベースに対する検索システムは, 精度, 再現度, 速度ともにめざましく進歩した. 検索は生活のあらゆるレベルに浸透し, コモディティ化したため, 検索に対する要求も性能面はもちろん...
在移动通信网络环境中,如何合理地组织和存储移动对象的配置信息,从而有效地降低查询和更新代价是位置管理中的一个重要问题.将数据挖掘应用到移动计算环境中是一项具有挑战性的研究课题,具有广阔的应用前景.区域...
传统k-means算法由于初始聚类中心的选择是随机的,因此会使聚类结果不稳定。针对这个问题,提出一种基于离散量改进k-means初始聚类中心选择的算法。算法首先将所有对象作为一个大类,然后不断从对象数...
针对广泛存在的层次编码型数据类型,提出了层次距离的新概念,证明了相关的数学性质,并在此基础上提出并实现了新的基于层次距离计算的聚类算法HDCA(Hierarchy Distance Computing...
为了识别犯罪嫌疑人伪造和篡改的虚假身份,利用树编辑距离计算个体属性相似性,证明了树编辑距离的相关数学性质,对属性应用层次编码方法,提出了一种新的基于树编辑距离的层次聚类算法HCTED(Hierarch...
聚类是数据挖掘领域中最活跃的研究分支之一,聚类技术在其他的科学领域也有广泛的应用。迄今为止已经提出了大量的聚类算法,其中基于密度的DBSCAN算法因其很多优点而备受关注,为了减少DBSCAN的区域查询...
We survey agglomerative hierarchical clustering algorithms and discuss efficient implementations t...
The system is representing hierarchical multilevel approach of clustering and explores dynamic model...
数据的规模越来越大,要求数据挖掘算法有很高的执行效率.基于密度的聚类是聚类分析中的一种,其主要优点是发现任意形状的聚类和对噪音数据不敏感.提出了一种新的基于参考点和密度的CURD(clustering...
传统的数据挖掘技术如分类、聚类、关联和异常点发现等技术与OLAP技术的结合通常采用的方法是分类、聚类、关联和异常点发现的结果即为任务的终点和目标.然而事实上,在实际需求中用户不仅仅需要分类、聚类等数据...
K-means 演算法是一個十分普及的分類演算法,它廣泛的運用在各種工程以及科學領域上,像是影像分割(Image segmentation)、圖形識別(Pattern classification)與...
基於屬性相似度將樣本進行分群的技術已經被廣泛應用在許多領域,如模式識別,特徵提取和惡意行為偵測。由於此技術的重要性,很多人已經將各種分群技術利用分散式框架進行再製,例如K-means搭配Hadoop在...
Hierarchical clustering is a recursive partitioning of a dataset into clusters at an increasingly fi...
随着信息技术的高速发展,数据量急剧增长,如何从海量的数据中提取有用的信息和知识成为当务之急。数据挖掘就是解决这个问题的新兴领域。聚类分析作为数据挖掘领域中的一个重要课题,受到了越来越多的关注。目前聚类...
Hierarchical clustering is a recursive partitioning of a dataset into clusters at an increasingly fi...
これまでに, データベースに対する検索システムは, 精度, 再現度, 速度ともにめざましく進歩した. 検索は生活のあらゆるレベルに浸透し, コモディティ化したため, 検索に対する要求も性能面はもちろん...
在移动通信网络环境中,如何合理地组织和存储移动对象的配置信息,从而有效地降低查询和更新代价是位置管理中的一个重要问题.将数据挖掘应用到移动计算环境中是一项具有挑战性的研究课题,具有广阔的应用前景.区域...
传统k-means算法由于初始聚类中心的选择是随机的,因此会使聚类结果不稳定。针对这个问题,提出一种基于离散量改进k-means初始聚类中心选择的算法。算法首先将所有对象作为一个大类,然后不断从对象数...