Urban population density always follows the exponential distribution and can be described with Clark's model. Because of this, the spatial distribution of urban population used to be regarded as non-fractal pattern. However, Clark's model differs from the exponential function in mathematics because that urban population is distributed on the fractal support of landform and land-use form. By using mathematical transform and empirical evidence, we argue that there are self-affine scaling relations and local power laws behind the exponential distribution of urban density. The scale parameter of Clark's model indicating the characteristic radius of cities is not a real constant, but depends on the urban field we defined. So the e...