Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.This work describes the principle of operation of neurons and how they form artificial neural networks. The structure and the operation of neurons are thoroughly described and the most widely used algorithm for neuron training is shown as well as the basics of fuzzy logic including its advantages and disadvantages...
Fuzzy neural networks (FNNs) have learning ability and adaptive capability. Usually, the typical app...
This paper deals with the possibility of learning the neural networks by the use of training pattern...
In this thesis we studied two of the most promising neural network classifiers called as fuzzy min-m...
Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkl...
Fuzzy neural networks are a connecting link between fuzzy logic and neurocomputing. The goal of this...
This thesis focuses on fuzzy neural networks. The combination of the fuzzy logic and artificial neur...
Diplomová práce se zabývá teorií umělých neuronových sítí, následně jsou popsány fuzzy množiny a vys...
Researching artifical intelligence there are two areas especially up-to-date. On the one hand there ...
Researching artificial intelligence there are two areas... In this report it is assumed that the rea...
This document describes the architecture of neuro fuzzy systems. First part of the document provides...
This dissertation presents a study of fuzzy inference networks for pattern recognition problems. In ...
This thesis consists of 2 sections. A neural fuzzy (neuro-fuzzy) system/network is the neural implem...
Soft Computing became a formal Computer Science area of study in the early 1990's. It deals with imp...
Research has been conducted on how to develop machine intelligence. Artificial Neural Networks (ANN)...
The goal of intelligent control is to achieve control objectives for complex systems where it is imp...
Fuzzy neural networks (FNNs) have learning ability and adaptive capability. Usually, the typical app...
This paper deals with the possibility of learning the neural networks by the use of training pattern...
In this thesis we studied two of the most promising neural network classifiers called as fuzzy min-m...
Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkl...
Fuzzy neural networks are a connecting link between fuzzy logic and neurocomputing. The goal of this...
This thesis focuses on fuzzy neural networks. The combination of the fuzzy logic and artificial neur...
Diplomová práce se zabývá teorií umělých neuronových sítí, následně jsou popsány fuzzy množiny a vys...
Researching artifical intelligence there are two areas especially up-to-date. On the one hand there ...
Researching artificial intelligence there are two areas... In this report it is assumed that the rea...
This document describes the architecture of neuro fuzzy systems. First part of the document provides...
This dissertation presents a study of fuzzy inference networks for pattern recognition problems. In ...
This thesis consists of 2 sections. A neural fuzzy (neuro-fuzzy) system/network is the neural implem...
Soft Computing became a formal Computer Science area of study in the early 1990's. It deals with imp...
Research has been conducted on how to develop machine intelligence. Artificial Neural Networks (ANN)...
The goal of intelligent control is to achieve control objectives for complex systems where it is imp...
Fuzzy neural networks (FNNs) have learning ability and adaptive capability. Usually, the typical app...
This paper deals with the possibility of learning the neural networks by the use of training pattern...
In this thesis we studied two of the most promising neural network classifiers called as fuzzy min-m...