Dans cette communication, on propose un algorithme basé sur la technique Least Angle Regression (LAR) pour construire une représentation par chaos polynomial creux de la réponse d'un modèle mécanique dont les paramètres d'entrée sont aléatoires. Le plan d'expériences est automatiquement enrichi de sorte à éviter les problèmes se surapprentissage. On obtient au final une représentation ne comportant qu'un faible nombre de termes non nuls, qui peuvent être estimés au moyen d'un nombre réduit d'évaluations du modèle. L'algorithme est appliqué au calcul des moments statistiques du tassement d'une fondation sur un sol dont le module d'Young es...
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems ...
We present an iterative algorithm for nonlinear regression based on con-struction of sparse polynomi...
science and engineering in order to predict the behaviour of systems and, in case of engineering app...
Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian ...
Abstract. Metamodelling decreases the computational effort of time-consuming computer simulations by...
Sparse polynomial chaos expansions (PCE) are a popular surrogate modelling method that takes advanta...
In this paper we present a basis selection method that can be used with `1-minimization to adaptivel...
Sparse polynomial chaos expansions (PCE) are an efficient and widely used surrogate modeling method ...
International audienceOn propose un algorithme permettant de construire une approximation par chaos ...
ABSTRACT: Sparse polynomial chaos expansions have recently emerged in uncertainty quantification ana...
The polynomial chaos expansion (PCE) is an efficient numerical method for performing a reliability a...
Modern high-resolution numerical models used in engineering often produce multidimensional maps of o...
The challenges for non-intrusive methods for Polynomial Chaos modeling lie in the computational effi...
International audienceThis study deals with the construction of stochastic process approximation by ...
This thesis takes place in the context of uncertainty propagation and sensitivity analysis of comput...
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems ...
We present an iterative algorithm for nonlinear regression based on con-struction of sparse polynomi...
science and engineering in order to predict the behaviour of systems and, in case of engineering app...
Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian ...
Abstract. Metamodelling decreases the computational effort of time-consuming computer simulations by...
Sparse polynomial chaos expansions (PCE) are a popular surrogate modelling method that takes advanta...
In this paper we present a basis selection method that can be used with `1-minimization to adaptivel...
Sparse polynomial chaos expansions (PCE) are an efficient and widely used surrogate modeling method ...
International audienceOn propose un algorithme permettant de construire une approximation par chaos ...
ABSTRACT: Sparse polynomial chaos expansions have recently emerged in uncertainty quantification ana...
The polynomial chaos expansion (PCE) is an efficient numerical method for performing a reliability a...
Modern high-resolution numerical models used in engineering often produce multidimensional maps of o...
The challenges for non-intrusive methods for Polynomial Chaos modeling lie in the computational effi...
International audienceThis study deals with the construction of stochastic process approximation by ...
This thesis takes place in the context of uncertainty propagation and sensitivity analysis of comput...
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems ...
We present an iterative algorithm for nonlinear regression based on con-struction of sparse polynomi...
science and engineering in order to predict the behaviour of systems and, in case of engineering app...